life-science.eu - Foto: (c) TU WienSie gelten seit Jahren als großes Hoffnungsgebiet in der Materialwissenschaft – zweidimensionale Materialien wie etwa Graphen, die nur aus einer oder aus wenigen Atom-Schichten bestehen. Sie weisen bemerkenswerte Eigenschaften auf, die ganz neue technische Möglichkeiten eröffnen, von der Sensortechnik bis zur Solarzelle. Eine neu entwickelte Methode kann nun die inneren Verbindungen sichtbar machen.

Ein wichtiges Phänomen konnte allerdings bisher kaum präzise vermessen werden: Die extremen inneren Dehnungen und Stauchungen, die in solchen Materialien auftreten können und die ihre physikalischen Eigenschaften oft drastisch verändern. An der TU Wien gelang es nun, diese Verzerrungen in 2D-Materialien auf mikroskopischer Skala vollständig zu messen, und so kann man nun auch genau beobachten, wie man durch bloßes Verbiegen des Materials seine Eigenschaften Punkt für Punkt anpassen kann.

Dehnen und zerren

Wenn man ein Material staucht oder dehnt, ändert sich der Abstand zwischen einzelnen Atomen, und dieser Abstand hat einen Einfluss auf die elektronischen Eigenschaften des Materials. Diesen Umstand nutzt man in der Halbleitertechnik schon lange. Man kann etwa Silizium-Kristalle gezielt so wachsen lassen, dass sie dauerhaft unter innerer mechanischer Spannung stehen.

Zweidimensionale Materialien, die nur aus einer ultradünnen Schicht bestehen, bieten hier allerdings viel weitreichendere Möglichkeiten: „Einen Kristall kann man vielleicht um ein Prozent stauchen, bis er bricht. Bei 2D-Materialien sind Verbiegungen von zehn oder zwanzig Prozent möglich“, erklärt Prof. Thomas Müller vom Institut für Photonik (Fakultät für Elektrotechnik und Informationstechnik) an der TU Wien. Je nach Verbiegung und den mechanischen Spannungen, die dadurch im Inneren des Materials auftreten, können sich die elektronischen Eigenschaften völlig verändern – etwa die Fähigkeit der Elektronen, einfallendes Licht zu absorbieren.

„Wenn man bisher messen wollte, welche Spannungen in einem solchen Material auftreten, musste man auf recht komplizierte Messverfahren zurückgreifen“, sagt Lukas Mennel (TU Wien), Erstautor der Publikation. Man kann etwa die Oberfläche mit einem Transmissionselektronenmikroskop abbilden, die durchschnittlichen Atom-Abstände messen und daraus auf Dehnungen oder Stauchungen rückschließen. An der TU Wien gelingt das aber nun viel einfacher – und gleichzeitig viel genauer.

Rotes Licht hinein – blaues Licht heraus

Man nutzt dabei einen bemerkenswerten Effekt, die sogenannte Frequenzverdopplung: „Wenn man bestimmte Materialien, in unserem Fall eine Schicht aus Molymbdändisulfid, mit dem passenden Laserlicht bestrahlt, dann kann es passieren, dass das Material eine andere Lichtfarbe zurückstrahlt“, erklärt Thomas Müller. Zwei Photonen des einfallenden Laserlichts werden zu einem Photon mit doppelt so hoher Energie vereint und vom Material emittiert.

Die Stärke dieses Effekts hängt allerdings von der inneren Symmetrie des Materials ab. Normalerweise hat Molybdändisulfid eine bienenwabenartige Struktur, also eine hexagonale Symmetrie. Wird das Material gedehnt oder gestaucht, wird diese Symmetrie geringfügig gestört – und diese kleine Störung hat dramatische Auswirkungen auf die Intensität des Lichts, das vom Material zurückgestrahlt wird.

Materialeigenschaften gezielt anpassen

life-science.eu - Foto: (c) TU WienWenn man eine Schicht Molybdändisulfid über eine Mikrostruktur legt, ähnlich wie ein Gummituch über ein Klettergerüst, dann ergibt sich ein kompliziertes Muster aus lokalen Verzerrungen. Man kann nun mit dem Laser das Material Punkt für Punkt abtasten und dadurch eine detaillierte Landkarte der Dehnungen und Stauchungen erhalten. „Dabei können wir nicht nur messen, wie stark die Verbiegungen sind, sondern auch genau sehen, in welche Richtung sie verlaufen“, erklärt Lukas Mennel.

Diese Abbildungsmethode kann man nun verwenden, um die Materialeigenschaften lokal gezielt anzupassen. „Man könnte dadurch zum Beispiel in Solarzellen durch maßgeschneiderte Materialverbiegungen dafür sorgen, dass die freien Ladungsträger möglichst rasch in die richtige Richtung abtransportiert werden“, hofft Thomas Müller. Der Forschung an 2D-Materialien steht somit ein neues, mächtiges Werkzeug zur Verfügung.

Originalpublikation: Optical imaging of strain in two-dimensional crystals, Lukas Mennel et al., Nature Communicationsvolume 9, 516 (2018). doi:10.1038/s41467-018-02830-y
https://www.nature.com/articles/s41467-018-02830-y

Quelle: Technische Universität Wien
Foto: (c) TU Wien

Kontakt:
Prof. Thomas Müller
Institut für Photonik
Technische Universität Wien
T: +43-1-58801-38739
thomas.mueller@tuwien.ac.at